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Why formalize the theory behind neural networks?
i.e. why should you care?

Lots of industry machine learning is empirical

Lack of mathematical backing for empirical findings

Data scientists often fall into the trap of fitting their findings or
hypotheses to a narrative
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Neural networks as latent variable representations

Canonical view of neural networks is formalized as a learning
representations of “uncovering latent variables”

Convolutional neural networks are explained as ”learning hierarchical
representations of images”

Long-short term memory machines have memory cells which manage
conflicts with long-term dependencies and new data
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Geometric representations for deep learning

Goal: Learn an optimal coordinate representation system of the
underlying data manifold where different target classes are linearly
separable by hyperplanes

Iteratively transform the coordinate representations (network layers)
of the data manifold (input data) with non-linear transformations
(activation functions) into a representation where the classes (targets)
are linearly separable by hyperplanes
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Geometric representations for deep learning (2)

If the network is well-trained, then the Euclidean distance between two
input points of the same class may be far apart when represented by
the input coordinates but close together in the output representation

Similarly, two points from different classes could appear close in the
input space (as measured by Euclidean distance) but far apart in the
output coordinates
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What’s a manifold?
first, some preliminary definitions

A topological space is a set of points (each with a set of
neighbourhoods)

A neighbourhood of a point is a set of points containing that point
where one can move some amount in any direction away from that
point without leaving the set

Or, given a topological space X and some point p ∈ X , a
neighbourhood of p is a subset V of X that includes an open set U
containing p. That is, p ∈ U ⊆ V
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What’s a manifold? (2)

A manifold is topological space which is locally “equivalent” to
Euclidean space at each point

Equivalence can be expressed via n coordinate functions, ci :
M −→ R, which together form a ”structure-preserving” function,
c : M −→ Rn, called a chart.

The Earth seems flat if you stand on it and look around

”Flatness” enables familiar concepts such as distance and gives
geometric meaning
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Okay, but really, what’s a manifold?

One dimensional manifolds: lines, circles

Two dimensional manifolds (surfaces): the plane, sphere, torus

Three dimensional manifolds (surfaces): ball, Earth, cube

We can embed manifolds into higher dimensional spaces

An embedding is when an instance of one mathematical structure is
contained within another instance (i.e. embed two-dimensional
manifolds in three-dimensional space)
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Okay, but really, what’s a manifold? (2)

A homeomorphism is a continuous function between topological
spaces that has a continuous inverse function

Two topological spaces with a homeomorphism between them are
called homeomorphic and we view them as the same

A manifold locally resembles Euclidean space; that is, every point
has a neighbourhood homeomorphic to an open subset of Euclidean
space while globally it may not
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Principal components analysis and manifold learning

PCA identifies three principal components within the data. Projection
onto the first two PCA components may not perfectly separate the
data

After PCA, only points on some embedded subspace inside in the
original space space will be attainable

The embedded subspace is a linear subspace and also manifold (e.g.
hyperplane)

For a non-linear dimensional reduction technique, that subspace may
be more complex (e.g. curved hyper-surface)
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Principal components analysis and manifold learning (2)

Take a two-dimensional manifold in a three-dimensional space

Manifold learning (Locally linearly embeddings (LLE) and IsoMap)
preserves the local structure when projecting the data, preventing the
mixing of the colors

http://www.astroml.org/book_figures/chapter7/fig_S_

manifold_PCA.html
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Non-linear dimensionality reduction
in the context of locally linear embeddings

We often want to map high-dimensional space to a low-dimensional
embedding, assuming the high-dimensional data lies on an embedded
non-linear manifold within the higher-dimensional space

Locally linear embeddings find a set of the nearest neighbors of each
point

We then compute a set of weights for each point that best describes
it as a linear combination of its neighbors

The weights that reconstructs the ith data point in the higher
dimensional space will be used to reconstruct the same point in the
lower dimensional space, creating a neighborhood preserving map
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Non-linear dimensionality reduction (2)
in the context of locally linear embeddings

Each point Xi in the higher dimensional space is mapped onto a point
Yi in the lower dimensional space by minimizing the cost function
C (Y ) =

∑
i | Yi −

∑
j Wi jYj |2

We fix the weights from the previous step and minimize the points Y
to find a new coordinate representation

This is equivalent to finding the eigendecomposition of an NxN
matrix (for N data points) where the non-zero eigenvectors make up
an orthogonal set of coordinates
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Locally linear embeddings & relations to manifold calculus

We will formalize neural networks as coordinate representations of the
data manifold

In locally linear embeddings, Euclidean distance can be used on the
newly learned coordinate system, which is ideal for us to understand
how “close” points are to each other

Coordinate representation of the metric tensor (loss) can be
backpropagated (pull-backed) through to the input to measure
distance in the input coordinates
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One more word on homeomorphisms

Recall that we establish homeomorphisms as continuous maps
between topological spaces

A homeomorphism f is continuous, one-to-one, onto, and has a
continuous inverse f −1

They “preserve topological integrity”
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Feedforward networks as coordinate transformations

Consider a homeomorphism as a coordinate system contained in the
manifold M

Our homeomorphism-as-a-coordinate-system will be
x : M −→x (M) ⊆ RdimM

A feedforward neural network learns coordinate transformations as
ϕ(l) : x (l) (M) −→(ϕ(l) ◦ x (l)) (M)

The feedforward network is initialized with Cartesian coordinates as
x (0) : M −→x(0) : M

The next iteration of the coordinate transformation is defined as
x (l+1) := ϕ(l) (x (l)): (M) −→x(l+1) (M)
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Feedforward networks as coordinate transformations (2)

A data point q ∈ M can be represented w.r.t. a coordinate system

For the coordinates at layer l + 1, our point q is represented as
layerwise composition
x (l+1) (q) := (ϕl ◦...◦ ϕ1 ◦ ϕ0 ◦ x 0) (q)

Each layer of the neural network is represented by some function ϕ

A bijection is a one-to-one (injective) and onto (surjective) mapping
of a set X to a set Y

Coordinate transformations are bijective (ex. ReLU is not a “proper”
coordinate transformation since it is not 1:1)
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Feedforward networks as coordinate transformations (3)

How do activation functions fit into this paradigm?

For some activation function f , a feedforward network transforms
coordinates as
x (l+1) := ϕl (x l) := f (x (l); l)

Here, ϕ represents layer l of the neural network (coordinate
transformation) and f specifically refers to the activation function

“The l + 1-th coordinate system is iteratively defined as the l-th
coordinate transformation on the previous (l-th) coordinate system”
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Feedforward networks as coordinate transformations (3)
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Residual networks as coordinate transformations

A residual network is a sequential model which includes skip
connections between layers

With skip layers we avoid vanishing gradients by using activations
from previous layers; layers are gradually expanded as opposed to
forcibly connected
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Residual networks as coordinate transformations (2)

A residual network transforms coordinates as
x (l+1) := ϕ(l)(x l) := x (l) + f (x (l); l)

A residual network with ReLU activation is always piecewise linear
with kinks of infinite curvature

By piecing the patches together, we find a global coordinate system
and thus the coordinate transformation is a bijection
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Softmax output layer
How does the output layer fit into this paradigm?

We can define the softmax coordinate transformation as
softmax(W (L) · x (L))j := eW

(L)j x(L) /
∑K

k=1 e
W (L)k x(L)

The probability that q ∈ M being from class j is
P(Y = j |X = q) = softmax (W (L) · x (L)(q))j
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The importance of the metric tensor

The metric tensor g is a function which takes as input a pair of
tangent vectors v and w at a point on a manifold and produces a real
scalar g(v ,w)

A tangent vector is a vector that is tangent to a surface at some
point p

The metric tensor generalizes the dot product for non-Euclidean
space, and defines the length and angle between tangent vectors

Now we can define and compute the length of curves on the manifold!
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The importance of the metric tensor (2)

A positive-definite metric tensor assigns a positive value g(v , v) > 0
to every nonzero vector v

A manifold with a positive-definite metric tensor is a Riemannian
manifold

A Riemannian manifold is a metric space (i.e. it has a distance
function d(p, q) which defines the distance from p to q)

The metric tensor is the derivative of the distance function

The metric tensor in a coordinate basis is a symmetric matrix with
entries that transform covariantly under changes to the coordinate
system (i.e. change of basis)
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The metric tensor as a loss function

From the l-th layer to the l + 1-th layer, we iterate through
coordinate transformations:

In the output coordinates we use Euclidean distance on a “flattened”
representation of the data manifold

The above is solved output-to-input; the coordinate representation of
the metric tensor is backpropagated through the network
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The metric tensor as a loss function (2)

Let δa
l+1.

.al
denote the Kronecker delta: δαβ :=

{
1 : α = β

0 : α 6= β

For a residual network, we find the Jacobian of the coordinate
transformation
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The metric tensor as a loss function (3)

For a layer l , we take the sequence of matrix products from output to
input to backpropagate the coordinate representation of the metric
tensor, where z(l+1) := W (l) · x (l) + b(l)
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The metric tensor as a loss function (4)

With the output metric as the Euclidean distance ηab, the linear
element in the coordinate space for some layer l is
ds2 = ηabP

a.
.al
Pb.
.bl
dxaldxbl

This defines a δ-ball at layer l corresponding to the ε-ball in the
output where the metric is Euclidean distance

These balls form an ε− δ relationship over the layers of the network,
where the δ-ball at one layer maps to the ε-ball of the next layer
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The pullback metric

So far we have assumed constant layerwise dimension, but in practice
the number of nodes per layer often changes

We say the dimension of the data manifold is the dimension of the
smallest layer of the neural network (i.e. dimM := minldimx (l)(M))

Then all higher dimensional layers are immersion or embedding
representations of this lowest dimensional representation

Recall that embedding refers to a one structure contained within
another

Immersions are just embeddings where the derivative is injective on
the tangent space at each point (i.e. the manifold is allowed to
self-intersect)

Helen Ngo TDLS Principles of Riemannian Geometry in Neural Networks August 13 2018 29 / 38



Tangent spaces

A tangent space is a vector space that contains the directions in
which one can tangentially pass through a point x ∈ M

For topological manifolds M,N, ϕ(l) : M −→ N is a smooth map. Let
TM,TN denote their tangent spaces

Take X ∈ TM where X : C∞(M) −→ R and let f ∈ C∞(N)
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The pushforward map

The pushforward map is the linear map

ϕ
(l)
∗ : TM −→ TN which takes an element X 7→ ϕ

(l)
∗

Its action on f is (ϕ
(l)
∗ X )(f ) := X (f ◦ ϕ(l))

Intuitively, it pushes tangent vectors on M forward to tangent vectors
on N

This can be viewed as the (total) derivative of ϕ
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The pullback metric

For some Riemannian manifolds M,N, ϕ(l) : M −→ N is a smooth

map and ϕ
(l)
∗ : TM −→ TN is the pushforward map between their

tangent spaces

The pullback metric g is defined as

gM(X ,Y ) := gN(ϕ
(l)
∗ X , ϕ

(l)
∗ Y ) for all X ,Y ∈ TM

This is the linear map from the space of 1-forms on N (vector space
of sections of the cotangent bundle) to the space of 1-forms on M

This is backpropagation
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The importance of changing dimensions

Since activation functions are limited, transforming the coordinate
systems aids in discovering the optimal coordinate charts (systems)
for the data manifold

Higher dimensions make it easier to separate complex data
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Empirical results
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Empirical results (2)
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In conclusion,
at long last...

A neural network starts with Cartesian coordinates

It learns a sequence of non-linear coordinate transformations to find a
coordinate representation of the data manifold which is representative

This representation tends to be flat (experimentally)
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In conclusion,
finally

In the forward pass, we begin with Cartesian coordinates and apply
differentiable coordinate transformations to find a nonlinear
coordinate representation of the data manifold so the classes of the
output coordinates satisfy the cost function

In the backwards pass, we start with the Euclidean metric at the
output and backpropagate the coordinate representation of the metric
tensor (loss) through the network to find the metric tensor
representation in the input Cartesian coordinates

This defines an ε− δ relationship between the input and output data
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